
e02 – Curve and Surface Fitting e02bcc

nag 1d spline deriv (e02bcc)

1. Purpose

nag 1d spline deriv (e02bcc) evaluates a cubic spline and its first three derivatives from its B-spline
representation.

2. Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_deriv(Nag_DerivType derivs, double x, double s[4],
Nag_Spline *spline, NagError *fail)

3. Description

This routine evaluates the cubic spline s(x) and its first three derivatives at a prescribed argument
x. It is assumed that s(x) is represented in terms of its B-spline coefficients ci, for i = 1, 2, . . . , n̄+3
and (augmented) ordered knot set λi, for i = 1, 2, . . . , n̄+7, (see nag 1d spline fit knots (e02bac)),
i.e.

s(x) =
q∑

i=1

ciNi(x)

Here q = n̄+3, n̄ is the number of intervals of the spline and Ni(x) denotes the normalised B-spline
of degree 3 (order 4) defined upon the knots λi, λi+1, . . . , λi+4. The prescribed argument x must
satisfy λ4 ≤ x ≤ λn̄+4.
At a simple knot λi (i.e., one satisfying λi−1 < λi < λi+1), the third derivative of the spline
is in general discontinuous. At a multiple knot (i.e., two or more knots with the same value),
lower derivatives, and even the spline itself, may be discontinuous. Specifically, at a point x = u
where (exactly) r knots coincide (such a point is termed a knot of multiplicity r), the values of the
derivatives of order 4 − j, for j = 1, 2, . . . , r, are in general discontinuous. (Here 1 ≤ r ≤ 4; r > 4
is not meaningful.) The user must specify whether the value at such a point is required to be the
left- or right-hand derivative.
The method employed is based upon:
(i) carrying out a binary search for the knot interval containing the argument x (see Cox (1978)),
(ii) evaluating the non-zero B-splines of orders 1,2,3 and 4 by recurrence (see Cox (1972) and Cox

(1978)),
(iii) computing all derivatives of the B-splines of order 4 by applying a second recurrence to these

computed B-spline values (see de Boor (1972)),
(iv) multiplying the 4th-order B-spline values and their derivative by the appropriate B-spline

coefficients, and summing, to yield the values of s(x) and its derivatives.
nag 1d spline deriv can be used to compute the values and derivatives of cubic spline fits
and interpolants produced by nag 1d spline fit knots (e02bac), nag 1d spline fit (e02bec) or
nag 1d spline interpolant (e01bac).
If only values and not derivatives are required, nag 1d spline evaluate (e02bbc)may be used instead
of nag 1d spline deriv, which takes about 50% longer than nag 1d spline evaluate (e02bbc).

4. Parameters

derivs
Input: derivs, of type Nag DerivType, specifies whether left- or right-hand values of the spline
and its derivatives are to be computed (see Section 3 ). Left- or right-hand values are formed
according to whether derivs is equal to Nag LeftDerivs or Nag RightDerivs respectively. If
x does not coincide with a knot, the value of derivs is immaterial. If x = spline.lamda[3],
right-hand values are computed, and if x = spline.lamda[spline.n−4]), left-hand values are
formed, regardless of the value of derivs.
Constraint: derivs = Nag LeftDerivs or Nag RightDerivs .

[NP3275/5/pdf] 3.e02bcc.1



nag 1d spline deriv NAG C Library Manual

x
Input: the argument x at which the cubic spline and its derivatives are to be evaluated.
Constraint: spline.lamda[3] ≤ x ≤ spline.lamda[spline.n−4].

s[4]
Output: s[j] contains the value of the jth derivative of the spline at the argument x, for
j = 0, 1, 2, 3. Note that s[0] contains the value of the spline.

spline
Input: Pointer to structure of type Nag Spline with the following members:

n - Integer
Input: n̄+7, where n̄ is the number of intervals of the spline (which is one greater than
the number of interior knots, i.e., the knots strictly within the range λ4 to λn̄+4 over
which the spline is defined).
Constraint: spline.n ≥ 8.

lamda - double *
Input: a pointer to which memory of size spline.n must be allocated. spline.lamda[j−1]
must be set to the value of the jth member of the complete set of knots, λj , for
j = 1, 2, . . . , n̄ + 7.
Constraint: the λj must be in non-decreasing order with
spline.lamda[spline.n−4] > spline.lamda[3].

c - double *
Input: a pointer to which memory of size spline.n−4 must be allocated. spline.c holds
the coefficient ci of the B-spline Ni(x), for i = 1, 2, . . . , n̄ + 3.

Under normal usage, the call to nag 1d spline deriv will follow a call to nag 1d spline fit knots
(e02bac), nag 1d spline fit knots (e02bac)or nag 1d spline fit (e02bec). In that case, the structure
spline will have been set up correctly for input to nag 1d spline deriv.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, spline.n must not be less than 8: spline.n = 〈value〉.

NE BAD PARAM
On entry, parameter derivs had an illegal value.

NE ABSCI OUTSIDE KNOT INTVL
On entry, x must satisfy spline.lamda[3] ≤ x ≤ spline.lamda[spline.n−4]:
spline.lamda[3] = 〈value〉, x = 〈value〉, spline.lamda[〈value〉] = 〈value〉.

NE SPLINE RANGE INVALID
On entry, the cubic spline range is invalid:
spline.lamda[3] = 〈value〉 while spline.lamda[spline.n−4] = 〈value〉.
These must satisfy spline.lamda[3] < spline.lamda[spline.n−4].

6. Further Comments
The time taken by this function is approximately linear in log(n̄ + 7).
Note: the function does not test all the conditions on the knots given in the description of
spline.lamda in Section 4, since to do this would result in a computation time approximately linear
in n̄ + 7 instead of log(n̄ + 7). All the conditions are tested in nag 1d spline fit knots (e02bac),
however, and the knots returned by nag 1d spline interpolant (e01bac) or nag 1d spline fit (e02bec)
will satisfy the conditions.

3.e02bcc.2 [NP3275/5/pdf]



e02 – Curve and Surface Fitting e02bcc

6.1. Accuracy

The computed value of s(x) has negligible error in most practical situations. Specifically, this value
has an absolute error bounded in modulus by 18× cmax× machine precision, where cmax is the
largest in modulus of cj , cj+1, cj+2 and cj+3, and j is an integer such that λj+3 ≤ x ≤ λj+4. If
cj , cj+1, cj+2 and cj+3 are all of the same sign, then the computed value of s(x) has relative error
bounded by 20× machine precision. For full details see Cox (1978).
No complete error analysis is available for the computation of the derivatives of s(x). However, for
most practical purposes the absolute errors in the computed derivatives should be small.

6.2. References

Cox M G (1972) The Numerical Evaluation of B-splines J. Inst. Math. Appl. 10 134–149.
Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst.

Math. Appl. 21 135–143.
De Boor C (1972) On Calculating with B-splines J. Approx. Theory 6 50–62.

7. See Also

nag 1d spline interpolant (e01bac)
nag 1d spline fit knots (e02bac)
nag 1d spline evaluate (e02bbc)
nag 1d spline fit (e02bec)

8. Example

Compute, at the 7 arguments x = 0, 1, 2, 3, 4, 5, 6, the left- and right-hand values and first 3
derivatives of the cubic spline defined over the interval 0 ≤ x ≤ 6 having the 6 interior knots
x = 1, 3, 3, 3, 4, 4, the 8 additional knots 0, 0, 0, 0, 6, 6, 6, 6, and the 10 B-spline coefficients 10,
12, 13, 15, 22, 26, 24, 18, 14, 12.
The input data items (using the notation of Section 4) comprise the following values in the order
indicated:

n̄ m
spline.lamda[j], for j = 0, 1, . . . , n̄ + 6
spline.c[j], for j = 0, 1, . . . , n̄ + 2
x m values of x

The example program is written in a general form that will enable the values and derivatives of a
cubic spline having an arbitrary number of knots to be evaluated at a set of arbitrary points. Any
number of data sets may be supplied.

8.1. Program Text

/* nag_1d_spline_deriv(e02bcc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*
* Mark 3 revised, 1994.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

main()
{
Integer i, j, l, m, ncap, ncap7;
double s[4], x;
Nag_Spline spline;
Nag_DerivType derivs;

[NP3275/5/pdf] 3.e02bcc.3



nag 1d spline deriv NAG C Library Manual

Vprintf("e02bcc Example Program Results\n");
Vscanf("%*[^\n]"); /* Skip heading in data file */
while(scanf("%ld%ld",&ncap,&m) != EOF)

{
if (m>0)
{
if (ncap>0)
{
ncap7 = ncap+7;
spline.n = ncap7;
spline.c = NAG_ALLOC(ncap7, double);
spline.lamda = NAG_ALLOC(ncap7, double);
if (spline.c != (double *)0 && spline.lamda != (double *)0)

{
for (j=0; j<ncap7; j++)
Vscanf("%lf",&(spline.lamda[j]));

for (j=0; j<ncap+3; j++)
Vscanf("%lf",&(spline.c[j]));

Vprintf(" x Spline 1st deriv \
2nd deriv 3rd deriv");

for (i=1; i<=m; i++)
{
Vscanf("%lf",&x);
derivs = Nag_LeftDerivs;
for (j=1; j<=2; j++)
{
e02bcc(derivs, x, s, &spline, NAGERR_DEFAULT);
if (derivs ==Nag_LeftDerivs)

{
Vprintf("\n\n%11.4f Left",x);
for (l=0; l<4; l++)
Vprintf("%11.4f",s[l]);

}
else

{
Vprintf("\n%11.4f Right",x);
for (l=0; l<4; l++)
Vprintf("%11.4f",s[l]);

}
derivs = Nag_RightDerivs;

}
}

Vprintf("\n");
NAG_FREE(spline.c);
NAG_FREE(spline.lamda);

}
else

{
Vfprintf(stderr,"Storage allocation failed. Reduce the \

size of spline.n\n");
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr,"ncap is negative or zero : ncap = %ld\n",ncap);
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr,"m is negative or zero : m = %ld\n",m);
exit(EXIT_FAILURE);

}
}

exit(EXIT_SUCCESS);
}

3.e02bcc.4 [NP3275/5/pdf]



e02 – Curve and Surface Fitting e02bcc

8.2. Program Data

e02bcc Example Program Data
7 7

0.0 0.0 0.0 0.0 1.0 3.0 3.0 3.0
4.0 4.0 6.0 6.0 6.0 6.0
10.0 12.0 13.0 15.0 22.0 26.0 24.0 18.0
14.0 12.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

8.3. Program Results

e02bcc Example Program Results
x Spline 1st deriv 2nd deriv 3rd deriv

0.0000 Left 10.0000 6.0000 -10.0000 10.6667
0.0000 Right 10.0000 6.0000 -10.0000 10.6667

1.0000 Left 12.7778 1.3333 0.6667 10.6667
1.0000 Right 12.7778 1.3333 0.6667 3.9167

2.0000 Left 15.0972 3.9583 4.5833 3.9167
2.0000 Right 15.0972 3.9583 4.5833 3.9167

3.0000 Left 22.0000 10.5000 8.5000 3.9167
3.0000 Right 22.0000 12.0000 -36.0000 36.0000

4.0000 Left 22.0000 -6.0000 0.0000 36.0000
4.0000 Right 22.0000 -6.0000 0.0000 1.5000

5.0000 Left 16.2500 -5.2500 1.5000 1.5000
5.0000 Right 16.2500 -5.2500 1.5000 1.5000

6.0000 Left 12.0000 -3.0000 3.0000 1.5000
6.0000 Right 12.0000 -3.0000 3.0000 1.5000

[NP3275/5/pdf] 3.e02bcc.5


